skip to main content


Search for: All records

Creators/Authors contains: "Phillips, A."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Many of the National Academy of Engineering’s grand challenges are related to environmental engineering. There is broad recognition that these challenges will require environmental engineers to integrate concepts from the natural and physical sciences, social sciences, business, and communications to find solutions at the individual, company, community, national and global levels. Montana State University is in the process of revolutionizing the curriculum and culture of its environmental engineering program to prepare and inspire a new generation of engineers through a project sponsored by the Revolutionizing Engineering Departments program at the National Science Foundation. At the core of the approach is transformation of the hierarchical, topic-focused course structure into a model of team taught, integrated, and project-based learning courses grouped around the key knowledge threads of systems thinking, professionalism, and sustainability. Multi-disciplinary faculty developed specific and detailed program outcomes after review of ABET program outcomes; the Fundamentals of Engineering exam; Body of Knowledge documents from the American Academy of Environmental Engineers (AAEE), the American Society of Civil Engineers (ASCE) and the American Society for Engineering Management (ASEM); the Engineering for One Planet report sponsored by the Lemelson Foundation; and the KEEN Framework on the Entrepreneurial Mindset. The resulting outcomes were organized into competency strands and competency domains. Currently, outcomes spanning the spectrum of content are being crafted into integrated and project-based courses in each year of the undergraduate curriculum. This paper reviews the lessons learned from the process of developing knowledge threads, competency strands and domains, and specific program outcomes with a multidisciplinary group of faculty, as well as the challenges of developing integrated and project-based courses within an established undergraduate curriculum. 
    more » « less
  2. Engineering education research and accreditation criteria have for some time emphasized that to adequately prepare engineers to meet 21st century challenges, programs need to move toward an approach that integrates professional knowledge, skills, and real-world experiences throughout the curriculum [1], [2], [3]. An integrated approach allows students to draw connections between different disciplinary content, develop professional skills through practice, and relate their emerging engineering competencies to the problems and communities they care about [4], [5]. Despite the known benefits, the challenges to implementing such major programmatic changes are myriad, including faculty’s limited expertise outside their own disciplinary area of specialization and lack of perspective of professional learning outcomes across the curriculum. In 2020, Montana State University initiated a five-year NSF-funded Revolutionizing Engineering Departments (RED) project to transform its environmental engineering program by replacing traditional topic-focused courses with a newly developed integrated and project-based curriculum (IPBC). The project engages all tenure-track faculty in the environmental engineering program as well as faculty from five external departments in a collaborative, iterative process to define what students should be expected to know and do at the completion of the undergraduate program. In the process, sustainability, professionalism, and systems thinking arose as foundational pillars of the successful environmental engineer and are proposed as three knowledge threads that can be woven throughout environmental engineering curricula. The paper explores the two-year programmatic redesign process and examines how lessons learned through the process can be applied to course development as the team transitions into the implementation phase of the project. Two new integrated project-based learning courses targeting the 1st- and 2nd-year levels will be taught in academic year 2023-2024. The approach described in this work can be utilized by similar programs as a model for bottom-up curriculum development and integration of non-technical content, which will be necessary for educating engineers of the future. 
    more » « less
  3. null (Ed.)
    Nonlinear time history analyses were conducted for 5-story and 12-story prototype buildings that used post-tensioned cross-laminated timber rocking walls coupled with U-shaped flexural plates (UFPs) as the lateral force resisting system. The building models were subjected to 22 far-field and 28 near-fault ground motions, with and without directivity effects, scaled to the design earthquake and maximum considered earthquake for Seattle, with ASCE Site Class D. The buildings were designed to performance objectives that limited structural damage to crushing at the wall toes and nonlinear deformation in the UFPs, while ensuring code-based interstory drift requirements were satisfied and the post-tensioned rods remained linear. The walls of the 12-story building had a second rocking joint at midheight to reduce flexural demands in the lower stories and interstory drift in the upper stories. The interstory drift, in-plane wall shear and overturning moment, UFP deformation, and extent of wall toe crushing is summarized for each building. Near-fault ground motions with directivity effects resulted in the largest demands for the 5-story building, while the midheight rocking joint diminished the influence of ground motion directivity effects in the 12-story building. Results for both buildings confirmed that UFPs located higher from the base of the walls dissipated more energy compared to UFPs closer to the base. 
    more » « less
  4. Abstract

    This study presents a description of the El Niño–Southern Oscillation (ENSO) and Pacific Decadal Variability (PDV) in a multicentury preindustrial simulation of the Community Earth System Model Version 2 (CESM2). The model simulates several aspects of ENSO relatively well, including dominant timescale, tropical and extratropical precursors, composite evolution of El Niño and La Niña events, and ENSO teleconnections. The good model representation of ENSO spectral characteristics is consistent with the spatial pattern of the anomalous equatorial zonal wind stress in the model, which results in the correct adjustment timescale of the equatorial thermocline according to the delayed/recharge oscillator paradigms, as also reflected in the realistic time evolution of the equatorial Warm Water Volume. PDV in the model exhibits a pattern that is very similar to the observed, with realistic tropical and South Pacific signatures which were much weaker in some of the CESM2 predecessor models. The tropical component of PDV also shows an association with ENSO decadal modulation which is similar to that found in observations. However, the ENSO amplitude is about 30% larger than observed in the preindustrial CESM2 simulation, and even larger in the historical ensemble, perhaps as a result of anthropogenic influences. In contrast to observations, the largest variability is found in the central Pacific rather than in the eastern Pacific, a discrepancy that somewhat hinders the model's ability to represent a full diversity in El Niño spatial patterns and appears to be associated with an unrealistic confinement of the precipitation anomalies to the western Pacific.

     
    more » « less
  5. Abstract

    An overview of the Community Earth System Model Version 2 (CESM2) is provided, including a discussion of the challenges encountered during its development and how they were addressed. In addition, an evaluation of a pair of CESM2 long preindustrial control and historical ensemble simulations is presented. These simulations were performed using the nominal 1° horizontal resolution configuration of the coupled model with both the “low‐top” (40 km, with limited chemistry) and “high‐top” (130 km, with comprehensive chemistry) versions of the atmospheric component. CESM2 contains many substantial science and infrastructure improvements and new capabilities since its previous major release, CESM1, resulting in improved historical simulations in comparison to CESM1 and available observations. These include major reductions in low‐latitude precipitation and shortwave cloud forcing biases; better representation of the Madden‐Julian Oscillation; better El Niño‐Southern Oscillation‐related teleconnections; and a global land carbon accumulation trend that agrees well with observationally based estimates. Most tropospheric and surface features of the low‐ and high‐top simulations are very similar to each other, so these improvements are present in both configurations. CESM2 has an equilibrium climate sensitivity of 5.1–5.3 °C, larger than in CESM1, primarily due to a combination of relatively small changes to cloud microphysics and boundary layer parameters. In contrast, CESM2's transient climate response of 1.9–2.0 °C is comparable to that of CESM1. The model outputs from these and many other simulations are available to the research community, and they represent CESM2's contributions to the Coupled Model Intercomparison Project Phase 6.

     
    more » « less